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ON STABILITY AND STABILIZATION OF MOTION WITH RESPECT 

TO A PART OF THE VARIABLES* 

V.I. VOROTNIKOV 

The method of Liapunov vector function is used to obtain the conditions of stability 
and instability of motion of a system with respect to a part of its variables. The 
system is described by ordinary differential equations with continuous right-hand 
sides. A technique for the solution of the problem concerning the stabilization of 
motion with respect to a part of the variables is discussed. This techniqueenables 
one to take into account the requirementspreviously specified, regarding the nature 
of the transition processes of the system, and to solve partially the problem of 
minimizing the demand on resources. A discussion is also presented of a method for 
the solution of minimization of a functional and of a game theoretic problem on a 
minimax-maximin of a functional, with the aim of satisfying the prescribed require- 
ments regarding the nature of the transition processes with respect to a part of the 
variables in the initial system. Mechanical examples are solved. 

1. Let the following system of differential equations of perturbed motion be given: 

I' = x (t, X) (X (t, 0) sa 0) (1.1) 

X = (Yl, : * ., y,, qr . . ., zp) = (14, z), 772 > 0, n = m + P, 

P>O 

We shall consider the problem of stability of the unperturbed motion 5 = 0 relative to y,, . . . . 
y, (y-stability) /1,2/. We assume /2/ that the right-hand sides of the system (1.1) are 

continuous in the region 

t>-0, IIEIlI~~>O, 0<IIzll<+a, (1.2) 

and satisfy the conditions of uniqueness of the solution. Solutions of (1.1) are z-continu- 
able, i.e. any solution x(t) is well defined at all t > 0, for which ll~(t)ll <H. We denote 
by x = X(t; t,, XO)a solution of (1.1) determined by the initial conditions x(t,; t,, x0)= x0. 

2. In a number of cases the y-stability of motion can be investigated by using the 
linear or nonlinear transformations of the initial system of equations to pass to an auxil- 
liary system the Liapunov stability of which is sufficient (sometimes even necessary) for 
the y-stability (**) of the initial system /3,4/. 

Below we study the problem of such transformations of the initial system using the dif- 
ferential inequalities. To solve the problem of y-stability of motion we must obtain the 
two-sided estimates for the variables y = (~1, . . . . y,,,) of the initial system. Such estimates 
will enable us to construct a Liapunov vector function which satisfies the V.M. Matrosov con- 
ditions /5/. 

Theorem 2.1. Let two vector functions V = (VI, . . . . V,), W = (W,, . . . . W,) in which 

vi = wi = y* (t =I, . . 0, m), VI = Vf (& X), W, = W, (t, x)(j = m + 1, . . ., k; s = m + 1, . . ., 7) 

and for which the following conditions hold, exist in the region (1.2): 
lo. 
2O. 

V, (t, 0) c 0, W. (t,O)=O, j = m + 1, . . ., k; s= m + 1, . . ., r- 
The derivativesY'.and W'satisfy, by virtue of the system (l.l), the inequalities 

v,* d Cp, (t, v,, . . ., V,), p = 1, . . ., k (2.1) 

w** > fe 0, w1, . . ., W,), 6 = 1, . . ., r (2.2) 

*Prikl.Matem.Mekhan.,46,No.6,pp.914-923,1982. 
**) Such transformation of the initial system were considered in a paper by V.I. Vorotnikov: 
A method of investigating the stability and stabilization of a motion with respect to a part 
of the variables. DissertationfordegreeofCandidateofPhys. andMathem. Sciences ,Moscow,MGU, 
1979. 
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Here the vector functions Cp (t, v) = (cpl, . . ., qk) and f (t, W) = (fi, . . ., f,), cp (t, 0) G 0, f(t, 0) z 0 
are well defined and continuous in the region t> 0, 11 V*(I (R where R = 00, or 

R > SUPUI V* k 4 II: t > 0, II g II < HI, v* = (v, W) 
3O. 
4O. 

None of the functions cp,, (f*) decrease in Vi, i 2_ p(Wj,j#e)/5/. 
Let a = (or, . . ., wm), p = (a,, . . ., u,). 

0' = Cp (& 0) (u' = f (& a)) is U (B)-stable. 
The solution w = 0 (u = 0)of the system 

Proof. The condition (2.2) is equivalent to 

-W* Q f** (t, -Iv,, . . ., --Iv,), @ = 1, . . ., r. 

and the functions fe* do not decrease in-W, lifr19). Let us construct the vector functionr = 
lv,, . . -t vk, -WI, . . ., 

, \I , 
- W,) and put v* = max (V,, Wi) = max I ys 1, s = 1, . . ., m. Since the 

function V* is y-positive definite, the conditions of V.M. Matrosov theorem /5/ hold for 
1 = 2m, M = {g =I i), M. = {x = 0) and this proves the theorem. 

Note. If the solutions e=O(u=O) of the corresponding systems in condition 4O are 
asymptotically a @)-stable, then the motion I= 0 of the system (1.1) is asymptotically y- 
stable. 

Assertion 1. When m=l, k=r and cp (& V) = f (6 W), and V = W then a vector func- 
tion V can be constructed in the region O< y, < H, O,<II z/I <+ ooand vector function W inthe 
region --H,<y,<O, O,<Il~ll<+~. 

Proof, By virtue of the conditions lo ,2O,3' and 4O of the theorem 2.1 we can find a 
number s(e, to)> 0 such that from ))rg)) <6 (yrO>O) follows /6/ 

Yl @; t,, 50) < al+ (t; &I, E,) <s, Eo = v (t,; to, I& El, > 0 

provided that YI (t; 1,, x0) > 0, and from II ~11 (6 (~1, < 0) follows 

Yl (t; to7 x0) >/a,- (G t,, Eo) > -a, 50 = W U,; to, 50), EnJ < 0 

provided that y, (t; t,, x0)< 0. Here ccl+and al-are the first components of the upper a*(t; t,,, 

co), a+ (k t,, Eo) = E0 and lower a-(t; t,,, Eo), d(t,; t,, f,,) = go solution of the system 

E‘ = cp (& f) = f 0, 5) (2.3) 

Let t= t* be the first instant of time at which y, (t*, &I, 10) < 0, y,,>O. 
the conditions l",30 and 4O we have 

By virtue of 

y, (t; t*, x (P))> a,- (t; P, 5*), 5* = w (P; t*, x (t*)) 

for all t > t* for which y, (t; t,, I,,) (0. But the solution al- (t;t*, E*)of the system (2.3) can 
be considered as an extension of the solution a,-(t; to, E,), II Lll > 6, La 0 of the same system 
defined for tE [t,J*I,on the time interval t > t* for which y1(t;t,,r,) (0. It follows there- 
fore that for all t > t, we have Ily (C to, .q,)/ <e, provided that IIxoII <h YIO b 0. The case 
I( z,,II (6, y,,< 0 is deal with in the same manner, and this proves the assertion. 

Note. Let the system (1.1) have the form 
Y' = A!/ + Y (Y, 4, 2. = CY + Dz + z (I/, z), 

where -4-S and C are constant matrices and Y,Z denote the nonlinear perturbations. We as- 
sume that in region(l.2)Y (y,z)> 0,A = (ai_j),~&_O (i # j). In this case the Liapunov vector func- 
tion can be constructed in the form V=(y,-W),while the vector function wis constructed 
with help of the methods of reduction to the p-form /3,4/ using the differential inequalit- 
ies. 

3. Let us obtain the conditions for y-instability of the motion x = 0 of system (1.1). 
First we introduce the following definition. 

Definition. The motion x= 0 of the system (1.1) will be called y-unstable from 
above (below) if numbers e> 0, t, > 0 can be found such, that for any arbitrarily small6(e, 
to)> 0 the system (1.1) has solutions s(t; ta. zo) with initial conditions llsOII (6 satisfy- 
ing, eventually, the inequality Yi (t;to,r&> 8 (Yi (t; to, 50) <-s) for at least one i = 1, . . ., m. 

We introduce into the discussion two continuous scalar functions u,(t,x) and u,(t,r) and 
call the set of points (t, z) belonging to the region 

t 2 0, 0 Q yt Q H, 0 < II x* II < + =J, (3.1) 

s*=(rl, . . ., Q-1, a+19 . . ., 4 
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for which the inequality U, (t, x)>O ;holb for at leastone I= 1, . . . . m, and named the region 

u1 0, 2) > 0. 

Theorem 3.1. Assume that a function lJ,(t,s) can be found for the system (3.1), satis- 
fying the conditions: 

1) region U,(I)> 0 exists for any t> 0 and arbitrarily small Ilrif i 
2) function U1(t, 5) is bounded in the region u,(l)> 0; 
3) for any e> 0 there exists s(e)> 0 such that for any point (t, r) of the region (3.1) 

satisfying the condition U,(t, z)> e we have U,(t, z);;S 6 where U, = U,'is a derivative by 

virtue of (1.1); 
4) the surface U, Q= 0 do not contains the points (t,r) for which yr<O. Then the 

motion .r= 0 of the system (1.1) is Y-unstable from above. 

Notes. lo. The conditions l)- 3) of the theorem 3.1 coincidewiththoseofthe Chetaev 
theorem /7/ on the instability (as well as with the notes of Rumiantsev in /a/) with a single 
difference. The region considered in /7/ was the region t>,O,IiziI<HH, in /S/ it was theregion 
(1.2) and in Theorem 3.1 it is the region (3.1). Compared with /7,8/, the condition 4) is 
new, Conditions l)- 3) ensure that the corresponding solutions of the system (1.1) emerge 
from the region (3.1) after a finite time /7f. By virtue of the x-continuability of the 
solutions of (1.1) and of condition 4), the such solutions emerge onto the surface YI=E. 

2O. If the motion x=0 of a linear stationary system is y-unstable, then it is I/-un- 

stable from above (from below). 
3O. If instead of region (3.1) we consider the region 

t>,o, -XdYIB0,Oen;c*II<+m 

then the motion ==O of (1.1) under the conditions 11-3) is r-unstable from below, provid- 
ed that the surface U,(l)=0 contains no points (t,t) for which yg>O. 

Theorem 3.2. Let us have at least one E(1< l< nzJ for which one of the two vector 
functions V = (V,, . . ., Vh), W = (WI, . . ., W,) exists in the region (1.2) in which VI = WI = yr, 
Vj= VJ (t, 2)~ Wa = W, (t,X) and for which the following conditions hold: 

1:. V,(& 0)s 0, w, (t, O)g 0, if 1, s+ 1. 
The derivative 

w&i ~~II~+IIc+~ 
V’ (W’) satisfies in the region t > 0, --N < Yr < VI G 0 (0 Q Yr = 
by virtue of the system (1.11, 

(2.2) f where the vector fdction m(t, V) (f(t, w)) 
the inequality (2.1) (inequality 

is defined and continuous in the region 

t>o,iivll<R,R=oJ or R > SUP III V (t, X) II: t > 0, 
_-H<Yl,<O 

0 2 0, II Wll CR, R = 02 or R > sup 111 W (t, X) 11: t 2 0, 
0 < Yl < H) 

3O. Conditions 2O and 3O of Theorem 2.1 hold. 
4O. The solution w = 0 (U = 0) of the systemo'==rp (t, m)(u’=rf (t, IL)), is~a, (fix)- unstable from 

below (above). Then the motion x = 0 of the system (1.1) is y-unstable. 

Proof. Since the solution 0 = 0 of the system 0 =m(t, co) is a,-unstable from below, 
it follows that for any s>O there exist solutions 0 (t; t,, 00) = u (t; to, V (to; to, IO)) with in- 
itial conditions I\roII <& (Yt.<O) satisfying, in the course of time, the inequality o1 (t; to, 
w,) <--LT. By virtue of the condition 3O and in accordance with /6/, Yt (t; t,, xg) (o,' (t; t,, me), 
0” (t,; to, 00) = O@, op = V&,; tm 4. Therefore in the course of time YE (t; to, 50) < --e and 
the proves the theorem. 

4. Example 1. Let us consider a motion of a solid caused by the initial perturbations 
taking place under the action of the dissipative and acceleration forces. In this case the 
equation of perturbed motion has the form 

where A,B and C are the principal moments of inertia of the body, a(l=i,2,3) are constant 
numbers ma *I'l<O. yIf*Ps<O. We introduce two vector functions V = (V,, V,), W = (W,,WI), in which 
V1 = w, = &, V* = w* = zp*. When C<A<B, we have the estimates 

B-C 
11 v*'=y~v,+.v, 
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in the region--HdIr,<O,ogg.l<+oo. Since the rootion f=O of the system 

h' = r&1+ 
B--C 
7 41, %' = vI$ f rs) 72 

is asymptotically Liapunov stable, it follows in accordance with Assextlon 1, that the motion 
3:=-o of the system (4.1) is asymptotically Y,- stable. 

Example 2. We consider the motion of a pendulum consisting of a material point suspen- 
ded from a thread the length of which varies according to an arbitrary, previously definedlaw 
1=1(t),z(f)>~lJ>,O. We denote by @ the angle formed by the pendulum thread and the vertical. 
In the present case the Lagrange equation in the variables 8= yl,8'==zl has the form 

Let us carry out a two-sided estimation of the variables of system (4.2). We have the 
following inequalities: 

in the region -B<~~<O,-=<Z~<+% When the condition 

t t 

s (S exQ t. 1. 

--Z+T)dt==A~l(t)dt<~ 
A = exP (-2)/&, = const 

holds, the motion e=o of the system 

is &-stable, therefore the motion += 0 of system (4.2) is y,-stable. 

Exampl@ 3. We consider the problem of instability of the steady rotation of a solid 
for the Euler-Poinsot case. The equation of perturbed motion have the form 

3-C C-A A-B 
Yl' = AZ@&' q' = 7 % (n+ Pof. %'= -%f?Jz + PO) C 

where A,B and Care principal moments af inertia of the body and PO= const>O. We introduce 
a vector function V = (V,, V,) in which V, = Y1 and V, = 11s~. When C<A<B or C>A>B,then 
we have, in the region 

strQo,~,+Po>o,O~f~zu+~ 

the estimate 
B-C 

Vt' = TV,, ,vz* = (PO + Yl) I 
C--A A-3 
-@-I- C E ---Z~2 go 1 

The matian (u= 0 of the system 

B-C 

is a-unsteble from below, therefore according to Theorem 3.2 the steady rotation Is & - 
unstable when C<A<B ar when C>A>B. From this it follows that the steady rotationabout 
the median axis of the inertia ellipsoid of the body is unstable relating to the projection 
of the angular velocity onto the axis of rotation. 

5. Let us have a controlled linear system of ordinary differential equations 

x'=A*x+B*rr (5.1) 

x=(n,..., Y,, Zi,...r +J=(g,z), m>o, n=~-t-p, P>Q 



737 

Here xis a* n-dimensional vector characterizing the state of the system, U=(Ul,..., I+) is 
an r-dimensional control vector, and A*, B* are constant n xn and u xz matrices. 'The 
system (5.1) written in the variables Y and z , has the form 

y’=Ay+Bz+Pu, z’=Cy+Dz+Qu (5.2) 

where A,B,C,D,P,Q are constant matrices of the corresponding sizes. 
Consider the problem of stabilization of the motion x = 0 of system (5.2) relative to 

Y,, . . -, Y,(Y-Stabilization /9,10/. We assume the controls admissible if U = {u: u=rly +mz} 
where rl and rp are constant matrices of the corresponding sizes. We know /11,12/ that the 
vector of the controls solving the y-stabilization problem for the system (5.2) can always 
be constructed in the form 

u (Y, 2) = rz + lJ* (Y, z) (5.3) 

The constant matrix r is determined by the transformation reducing the system (5.2) to pres- 
cribed form, and the control u*(y,z) solves the problem of stabilization over all variables 
for an auxilliary linear stationary system (we shall call it a system of Y-form) the dimen- 
sion of which is lower than that of the initial system. 

Let E=(&,..., EN) denote the variables characterizing the state of the system of Y- 
form. We introduce the functional 

(5.4) 

where m(& U*) is a positive-definite quadratic form of the variables E, u*, 5 [tl are the solu- 
72"; of the system of p-form for u = u* (g), u* ltl = U* (E ltl). Choosing the control forces ul*, 

. .T r so that the integral (5.4) is minimized on the trajectories of the system of Y- 
form,'we can attain the following two targets: 

lo. The condition of a minimum of the integral (5.4) must ensure a sufficiently rapid 
decay of the motions Y,, . . .,y, of the system (5.2) for u = l‘z + u*, since the behavior of 
the variables &,..., EN Of the System Of Y-fO?ZU fully determines, in accordance with /11,12/, 
the behavior of the variables Y,, . . ., Y, 

2O. 
of the system (5.2) for u = rZ + u*. 

The magnitude of the integral (5.4) determines satisfactorily the resources expended 
on forming the control U,*Itl and hence solves partially the problem of minimizing the loss of 
resources in constructing the control of the form (5.3). 

The problem of semioptimal Y-stabilization consists of finding a control UE u such that 

the unperturbed motion x= 0 of the closed system (5.2), (5.3) is asymptotically Y-stable 
and the functional (5.4) is minimized on the trajectories of the system (5.2). Let us consid- 
er the matrices 

K = {(B + Pr)T, (D + Qr)=(B + PI’)T, . . ., (D + QqTp-* X 

(B + pw 

K, = {LIB*, AIL,B*, . . ., A;“+N-‘L,B*} 

where E,is a unit matrix of the size m x m; (li,, . . ., li,)T, i = 1, . . .V Nare linearly independent 
column vectors -columnsof the matrix K, L, is an arbitrary constant (n - m-p) X p matrix 
such that the matrix Lis nondegenerate, N =rank K and T denotes transposition. 

Theorem 5.1. Let a constant matrix r exist such, that m+N=rank K,. Thentheproblem 
of semioptimal Y-stabilization has a solution for the system (5.2). 

Proof. Under the conditions of the theorem a system of y-form will, according to /12/, 
be completely controllable. Then according to /13/ the problem of optimal stabilization up to 
the asymptotic Liapunov stability for the system of Y-form will, under the condition that 
the quality of the tansition process in a system of Y-form is determined by the functional 
(5.4), have a unique solution. But the behavior of the variables describing the state of the 
system of Y-form determines completely the behavior of the variables :y,, . . . . y, of the closed 
system (5.2), (5.3), and this completes the proof of the theorem. 

In the case of nonlinear systems we can also use with success the method of constructing 
the controls, which solve the problem of y-stabilization, in the form (5.3). We should re- 
member the apparent infrequency of the case in which the solution controls have the form u, = 
u,(l) f Uj@) where the controls Uj"'(Y,Z) reduce the initial system to some auxilliary system of 
Y-form (which is, in general, nonlinear) such, that the solution of the problem of optimal 
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stabilization up to the asymptotic Liapunov stability for a system of p-form guaxantees,with 
help of the control U,(D), the solution of the problem of semioptimal g-stabilization of the 
initial system by the control ~3 = %_$I) + y$@. In the general case we find that the solution 
controls Uf have the form 

uj = ujll' + fj (y9 2) up (5.5) 

where the controls u/(l) and up) are defined above and fj(y,z) denote certain functions (gen- 
erally speaking nonanalytic) of the variables yand Z. The controls (5.5) may turn out to 
be nonanalytic functions of the variabl.es determining the state of the initial system, and 
the problem of their physical realizability would then require additional attention. (The 
problem of y-stabilization of a motion within this class of controls has been studied in 
/lZ/). We ndte that we may use the procedures given in /4/' for constructing systems of p- 
form, to construct the controls of the form (5.5). 

Example 4. We consider the equations of motion of an airplanewithvariableaerodynamic 
characteristics /14/ 

TX. = SE‘ "8‘ = %T, + (% + p2* (Q) 53 + 4 ftf U (5.6) 

%* = =n + f%?' + P38 (Qf tzl 

Here 21 is the angle of pitch, z3 is the angle of attack, u is the deflection of the elevator, 
b,(t) together with the coefficients of the system represent the aerodynamic characteristics. 
We shall consider the problem of optimal. stabilization of the unperturbed motion of thesystem 
(5.6) relative to the angle of attack, We introduce the new variable li= Q-i- (% f PM (1))~~ t 
whereupon (5.6) assumes the form 

PI' = "2. 4' = %A i (Q _t ~43 (L)) zs + be (t) u (5.X 
3s’ = p1‘ $’ = P (t) 5p + F (tt za + Ir, (t) u 

(1. (0 = Q2 + %3 + Psa (0, i?(t) = =13 + Pns (0 -t Pa3 It) + (a,2 + par (t))’ 

Following (5.3) we construct the control. u(t) in the form 

,c ff) c - +&X2 + ?&if) I T(f) 3 + rr* (8) (5.8) 

J?(S) = 
i 

* (0 
--A+ T be(t) 7. = (.Q, z,) 

The following equations form the system of p-farm corresponding to the matrix T(t) 

x3" = n, q' = E (t) I, + bz (t) u’ (5.9) 

The problem of ra-stabi.lizatiun of the unperturbed motion of the system (5.6) is now reduced 
to the problem of stabilization of the motion r,=q= 0 of the system (5.9) up to the asympto- 
tic Liapunav stability. Introducing the functional of the form (5.4) 

r[U]+(f: Z),?.V+J)dE 
t. 

and constructing the cantrool U* according to the method given in /15/, we can ensure a suf- 
ficiently rapid decay of the transition process in the closed system (5.6), (S-8), relative 
to the variable =a> and solve parti.aZly the problem of minimum loss of resources in construct- 
ing the control in the form (5.8). 

with 
have 

Example 5. We consider the problem of putting out the rotations of a heavy rigid body 
a fixed point, caused by the initial perturbations. The equations of perturbed motion 

Here d,B and C are the principal moments of inertia of the body, ri (i- I,?,, 3) are the projec- .^^ 
tions of the velocity of the body on the principal axes of inertia ) YtU= l,G3) are projec- 
tions of the unit vector directed along the fixed vertical axis on the principal axes of in- 
ertia, rio(b= 1,!&3) are coordinates of the center of inertia in terms of the principal axes of 
inertia, z+‘ and II~ are controls depending on the orientation of the body and independent of 
its angular velocity, and ue is a control which may depend on the orientation of the body, as 
well as on its angular velocity. 

Let us consider the control laws 
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(5.11) 

and introduce a new variable p= (B-c) ,T,z$A. The following two equations will appear in the 
closed system (5.10), (5.11): 

21 = p, p’ = u* (5.12) 

and we can now replace the problem of xl-stabilization of the unperturbed motion of the 
system (5.10) by a problem concerning the stabilization of the motion zl= p= 0 of (5.12) up 
to the asymptotic Liapunov stability. Introducing the functional 

_ 
I[ul= o(z,,~.u*)dt 

i 

and solving for system (5.12) the problem of optimal stabilization of the unperturbed motion, 
we obtain the control laws which solve for (5.10) the problem of semioptimal x1 -stabiliza- 
tion. We note that the control laws (5.11) obtained map the motion of the body caused by the 
initial perturbations onto a plane perpendicular to the zl-axis. 

Example 6. Let us considertheequations of perturbed motion of a gyrostat /16/ 

a,x; = Z5ZQ- .7&z, -+I, ~4' = ~~3~ - Z~S, (123, ABC) (5.13) 

where (11, %. % and $1, +I. 2~ are the moments of inertia and angular velocities of the device 
respectively, z4.5~. Z~ are linear functions of the angular velocities of the device and the 
flywheels, and ul, up, u3 are the controls. We consider the control laws 

and introduce a new variable P= ZP~-Q~,. The following two equations will appear in the 
closed system (5.13), (5.14): 

alzl’ = p, p’ = .+ (5.15) 

.andweshallbe able to replace the problem of z,-stabilization of the unperturbed motion of 
the system (5.13) by the problem of stabilizing the motion zl=p=O of system (5.15) up to 
the asymptotic Liapunov stability. Solving now the problem of optimal stabilization of the 
unperturbed motion for (5.15), we obtain the control laws which solve for (5.13) the problem 
of optimal I~- stabilization. We note that the control laws (5.14) map the motion of the 
gyrostat caused by the initial perturbations, onto the plane perpendicular to the zl-axis. 

6. Considerable literature exist dealing with the problem set by A.M. Letov /16/ of 
minimization of a functional. The problem is that of realizing certain requirements demanded 
of the quality of the transition processes in the system. Let us assume that certain require- 
ments concerning the quality of the transition processes in the variables YI,. . .,Y, in the 
system (5.2) must be fulfilled. This can be done by constructing the controls of the form 
(5.3) and solving, for a system of equations, p-form, the problem of minimizationofa quad- 
ratic functional. We note that the problem of minimizing the loss of control resources is 
solved here, as in the problem of y-stabilization, only partially. By constructing the con- 
trols in the form (5.5), we can adopt an analogous approach to the nonlinear systems. 

7. Let us now consider a linear system of ordinary differential equations with conflict- 
ing controls 

x' = A*x + B*u + C*v (7.1) 
x = (Yl, . . ., Y,, z1r . . .1 zP) = (Y, z), m> 0, n = m + P, 

P>O 

Here x is an n-,dimensional vector of state of the system, u and v are the control vectors of 
the first and second player, and A*, B* and C*are constant matrices of the corresponding 
sizes. In the y,z-variables the system (7.1) has the form 
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y' = Ay + Bz + P,u + Qp, z’ = Cy -t- Dz + p,u + Qau (7.2) 

where A, B, C, D, Pa, P,, Qlt Q 2 are constant matrices. The linear-quadratic game for the mini- 
max-maximin of a certain functional /17/ mirrors certain requirements concerning the behavior 
of the variables x=(X1. . . ..a) of the initial system (7.1). Let us assume that only the re- 
quirements concerning the variables Y,, . ..,y, of the system (7.1) must be fulfilled. This 
can be done by choosing the controls in the form 

u = r(l) 2 + LL* (t), v = Wh +v* (t) (7.3) 

where r(l) and W are constant matrices of the corresponding size, Substituting (7.3) into 
(7.2) we obtain 

Y' = Ay +(B -I- P,W+Q,I'@fzt)~ + P,u* + QI@ (7.4) 
z' = Cy + (D -f- P,W + QW')z + P,u* + Qav* 

Setting now in (7.4) U* s 0, V* IO and constructing for the resulting system of p-form /3/ 
E' = Ge describing fully the state of its variables Y1,...,y,, we obtain the fallowing equa- 

tions for the system (7.4): 

e'= Gf +P*u* +- Q*v* (7.5) 

and the number of these equations may be lower than that of the equations in the initialsystem 
(7.1). The behavior of the variables describing the state of the system (7.5) describes fully 
the state of the variables y,, . . . . y, of the closed system (7.21, (7.3). Solving the problem 
for the minimax-maximin of a certain quadratic functional specified fox the system (7.5), we 
can realize, using the known methods of its solution /17/, the specified requirements for the 
behavior of the variables Yl>. . f, Ym of the initial system (7.11 with conflicting controls. 
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